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1. Introduction  

In recent years, wavelets with their characteristic properties have found their place in a wide range of engineering disciplines. Wavelets are used 

in numerical analysis, signal analysis, system analysis, optimal control and solution of many differential and integral equations. The main 

characteristic of wavelets is its ability to convert the given differential equations, fractional order differential equations and integral equations to 

a system of nonlinear and linear algebraic equations, which are then solved by existing numerical methods. Many researchers started using 

various wavelets for analyzing problems of greater computational complexity and show that wavelets to be an powerful tools to explore a new 

direction in solving differential equations of first and higher order.  

In general it is not always possible to obtain exact solution of an arbitrary differential equation. This necessitates either discretization of 

differential equation leading to numerical solutions, or their qualitative study which is concerned with deduction of important properties of the 

solutions without actually solving them. . Many authors are used to different types of wavelet and approximating functions for solving initial and 

boundary value problems. Hsiao and Wang [1] used Haar wavelet for solution of nonlinear stiff systems, Chen and Hsiao [2] time-varying 

functional differential equations and lumped and distributed-parameter systems, U. Lepik [3] solving differential equation and Evolution 

equation using Haar wavelets, S. A. Youefi [4] used Legendre wavelet method for solving differential equation of Lane-Emden type, H. Kaur et. 

al. [5] give Haar wavelet approximate solutions for the generalized Lane Emden equations, R. K. Pandey et. al. [6] used Legendre operational 

matrix of differentiation for solution of Lane- Emden equation. N. Berwal et. al. [7] solving differential equation through Haar operational 

matrix. 

______________________ 

There are two different approaches for solving differential equations. One approach is based on converting differential equation into integral 

equations through integration, and approximating various signals involved in the equation by truncated orthogonal series, and using the 

operational matrix of integration, to eliminate the integral operations [8]. Another one is based on using operational matrix of derivatives in order 

to reduce the problem into solving a system of linear or nonlinear algebraic equations. There are some papers in the literature about using the 

operational matrix of derivatives to solve differential equations. 

The outline of this paper is as follows: in second section, we discussed how to construct Bernoulli wavelet. In third section, we discuss the 

function approximation and operational matrix of integration for Bernoulli wavelet. In section fourth, we apply Bernoulli wavelet technique and 

find out an approximate solution of the three examples.   

 

2. Bernoulli Wavelet  

Bernoulli wavelets [9]  ,
ˆ( ) , , ,n m t k n m t  have four arguments; 1ˆ 1, 1,2,3,...,2 ,kn n n k   can assume any positive integers, m is the order 

for Bernoulli polynomials and t is the normalized time. We define them on the interval [0,1) as follows 
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Where 0,1,2,..., 1m M  and 
11,2,...,2 .kn  The coefficient 
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translation parameter ( 1)ˆ2 .kb n   Here, ( )m t are the well-known Bernoulli polynomials of order m which can be defined by [9] 
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where , 0,1,...,i i m  are Bernoulli numbers. These numbers are a sequence of rational numbers which arise in the series expansion of 

trigonometric functions [10] and can be defined by the identity 
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The first few Bernulli numbers are 
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with 2 1 0, 1,2,3,...i i     

the first few Bernoulli polynomials are 
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These polynomials satisfy the following formula [10] 
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According to [10], Bernoulli polynomial form a complete basis over the interval [0,1].
 

 

3. Function approximation 

Suppose that  110 11 22 1
( ), ( ),..., ( ) [0,1]k M
t t t L    

 is the set of Bernoulli wavelets and a function ( )f t defined over 2[0,1]L can be 

approximated by Bernoulli wavelet series as follows 
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where 
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if the infinite series in equation (5) is truncated then the equation (5) can be written as 
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where T indicated transposition and, C and  t are 
12 1k M  column vectors given by 
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Since the truncated Bernoulli wavelet series can be an approximate solution of differential equation, one has an error function ( )E t for ( )f t as 

follows: 

         ( ) ( ) .TE t f t C t  
 

 

4 Bernoulli wavelet operational matrix of integration                 

We derive Bernoulli wavelet operational matrix of integration. To illustrate the working procedure, we choose 2k  and 3M  .We have: 
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Figure 4.1: Bernoulli wavelets for 2; 3k M  and t in [0,1/ 2]  
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Figure 4.2: Bernoulli wavelets for 2; 3k M  and t in [1/ 2,1]  

 

Figure 5.4.1 and Figure 5.4.2 shown the plot of Bernoulli wavelets for 2k   and 3M  . 

By integrating the equations (5.4.8), (5.4.9) from 0 to t  and using 
, ,( ),n m n mC f t  , obtained as 
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5 Application of the Bernoulli wavelet method 

In this section, operational matrix of integration of Bernoulli wavelet is used for finding the numerical solution of ordinary differential equations.  

Assume that 
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where TC is an unknown vector which should be determined, ( )t is the vector defined in (5.3.7) and ,n  denote the order of higher order 

derivate, which involves in given problem. Equation (5.5.11) is integrated n time with respect to t, in this way the solution ( )y t and its nth 

derivative are expressed in terms of Bernoulli wavelet functions and their integrals. 

The expression of '( ), ( ),..., ( )ny t y t y t are substituting in the given differential equations. Thus we get a system of equation with 
12k M

unknowns. Then we can obtain the unknown vector C by solving this system of equations. By inserting these values of C, we can easily find the 

corresponding expression of ( )y t . All calculations have been done by mathematica-7. 

 

 

 

Example 5.1: Let us consider the following differential equation [7] 

                                                   '' '( ) 2 ( ) 5 ( ) ( )y t y t y t f t                                                                                 (11) 

with condition 

                                               '(0) 0, (0) 1.y y                                                                                            (12) 

where ( ) 3exp( )sinf t t t  and the exact solution of equation (11) by homotopy perturbation method is   

                                                  ( ) exp( )sin .y t t t   

First, approximate second order derivative as 
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and integrating equation (13) with respect to t two time and using equation (12), we get 

                                                  ' ( ) 1 ( )Ty t C P t                                                                                              (14) 
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We approximate 1 as  
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so  
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Substituting equation (13) and (15-17) in equation (11), we obtain 
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By solving this system of linear equations, we can find the coefficient vector C  for different value of K  and M  Putting the value of the vector 

C  in equation (16) we get the required numerical solution of the Example 5.1 for Bernoulli wavelet 2K   and 3, 4M   . It can be seen from 

Figure 5.1.1 that the obtained solutions by the given method approach is too close to the exact solution. In order to analyses the effectiveness of 

the given approach has good convergence in the certain applicable domain and this is showing in the Table 1. 

 

 

t    ES by 

HPM 

 Haar Solution 

for 8M   

 BWM for 

2, 3k M   

 BWM for 

2, 4k M   

 Absolute Error

2, 4k M   

0.0625    0.0587   0.0576   0.0563   0.0585   41.46 10  

0.1875    0.1545   0.1539   0.1522   0.1538   46.56 10  

0.3125    0.2249   0.2245   0.2237   0.2255   46.65 10  

0.4375    0.2735   0.2735   0.2708   0.2736   41.27 10  

0.5625    0.3039   0.3042   0.2911  0.3037   41.14 10  

0.6875    0.3191  0.3192   0.2833   0.3186   44.59 10  

0.8125    0.3222   0.3225   0.2457   0.3226   44.74 10  

0.9375    0.3157   0.3160   0.1763   0.3157   58.10 10  

 

Table 5.1.1: Numerical results of ( )y t for 2k  and 2, 3M  and exact solution of example 5.1. 

 

( )y t
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______Exact solution 
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Figure 5.1.1: Coparision of ( )y t for 2k  and 3M  with exact solution of example 5.1. 

 

Example 5.2: Consider the following eighth order differential equation [7] 

                                ( ) ( ) 8exp( )viiiy t y t t           where      0 1,t                                                                 (19) 

with initial conditions 
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Exact solution of equation (19) is  ( ) 1 exp( ).y t t t 
 

First, approximate ( )viiiy t  as 
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Integrating equation (21) with respect to t  and using initial conditions (20), we get 
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We also approximate exp( )t as  
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Substututing equation (21), (22) and (23) in equation (19), we get 

                              
2 3 4 5 6 7

81 1 2 3 4 5 6 ( ) 8 ( )
2! 3! 4! 5! 6! 7!

T T Tt t t t t t
C t C P t J t

 
             

 
                         (24) 

Let  
12 3 4 5 6 7 2 1

1 0

1 1 2 3 4 5 6 ( )
2! 3! 4! 5! 6! 7!

k M
T

nm nm

n m

t t t t t t
r t R t

 

 

         , then equation (24) can be written as 

                                8 ( ) 8 ( )T T TC I P t R J t      

                               
1

88T T TC R J I P


                                                                                                        (25) 

By manipulating system (25) of linear equations and obtain the coefficient vector TC . Putting value of the vector TC  in equation (22) we 

acquired the approximate result of the Example 5.2 for Bernoulli wavelets ( 2; 3, 4)k M  and shown in Figure 5.2 1. This has been shown 

that the solution obtained by the proposed method is very close to the exact solution. In order to analyses the effectiveness of the proposed 

approach, The results of example 5.2 are compared with Haar wavelet results. Which is showing in the Table 5.2.1. 

t   ES  Haar Solution

8M   

 BWM for 2, 3k M    BWM for 

2, 4k M   

 Absolute Error

2, 4k M   

0.0625   0.9980   0.9970   0.9977   0.9981  41.6 10  

0.1875   0.9812   0.9790   0.9795   0.9811  31.0 10  

0.3125   0.9397   0.9386   0.9387   0.9387   49.9 10  

0.4375   0.8712   0.8693   0.8698   0.8709   42.6 10  

0.5625   0.7678   0.7661  0.7658   0.7681  43.2 10  

0.6875   0.6215   0.6193   0.6184   0.6235   32.0 10  

0.8125   0.4225   0.4200   0.4180   0.4205   31.9 10  

0.9375   0.1596   0.1565   0.1531  0.1590   45.3 10  

Table 5.2.1: Numerical results of ( )y t for 2k  and 2, 3M  and exact solution of example 5.2 
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.   

Figure 5.2.1: Coparision of ( )y t for 2k  and 3M  with exact solution of example 5.2. 

Example 5.3: Consider the following linear Lane-Emden equation [12] 

                             
'' ' 2 31
( ) ( ) ( ) 9 4,y t y t y t t t t

t
            where      0 1,t                                                   (26) 

Subject to the boundary condition 

                            ' (0) 0, (1) 0.y y                                                                                                                   (27) 

The exact solution is 2 3( ) .y t t t   

First, approximate second order derivative as 

                                      
12 1

''

1 0

( ) ( ) ,

k M
T

nm nm

n m

y t c t C t

 

 

                                                                                   (28) 

and integrating equation (28) with respect to t two time and using equation (27), we get 

                                    ' ( ) ( ),Ty t C P t                                                                                                               (29) 

and 

                                   2( ) ( ).Ty t C P t                                                                                                                (30) 

We approximate 1 as  
12 1

1 0

1 ( )

k M
T

nm nm

n m

l t L t

 

 

   and integrating it three time 0 to t , we get 

                                   ( )Tt L P t  ,  2 22 ( )Tt L P t    and  3 33! ( )Tt L P t                                                      (31) 

Substituting equations (28-31) in equation (26), we have 

             2 2 31
2! ( ) 3! ( ) 9 ( ) 4 ( )T T T T T T TC t C P t C P t L P t L P t L P t L t

t
              

           2 2 31
2! 3! 9 4 ( )T TC I P P t L P P P I t

t

 
        

 
 

        
1

2 3 21
2! 3! 9 4T TC L P P P I I P P

t



 
      

 
                                                                                        (32) 

 

By solving system of linear equations (32), we obtain the coefficient vector
TC . Inserting the value of the vector 

TC  in equation (30) we find the 

acquired approximate result of the Example 5.3 for Bernoulli wavelets ( 2; 3, 4)k M   and shown in Figure 5.3 1. Figure 5.3.1 shows that the 

______Exact solution 

…………. BWS 

( )y t

t
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solution obtained by the proposed method is very close to the exact solution. The effectiveness of the proposed way has very good in the certain 

applicable domain and this is showing in the Table 5.3.1. 

 

t    ES  BWM for 

2, 3k M   

 BWM for 

2, 4k M   

 Absolute Error

2, 3k M   

 Absolute Error

2, 4k M   

0.0625    0.0036   0.0041  0.0037   44.3 10   53.7 10  

0.1875    0.0285   0.0306   0.0283   32.0 10   42.6 10  

0.3125    0.0671  0.0650   0.0670   32.0 10   41.3 10  

0.4375    0.1076   0.1072   0.1075   44.3 10   41.6 10  

0.5625    0.1384   0.1388   0.1384   44.3 10   52.7 10  

0.6875    0.1477   0.1498   0.1475   32.0 10   42.0 10  

0.8125    0.1237   0.1216   0.1234   32.0 10   43.7 10  

0.9375    0.0549   0.0544   0.0548   44.3 10   41.3 10  

             

Table 5.3.1: Numerical results of ( )y t for 2k  and 2, 3M  and exact solution of example 5.3. 

 

 

Figure 5.3.1: Coparision of ( )y t for 2k  and 3M  with exact solution of example 5.3. 

6 Conclusions 

The main goal of this paper is to develop an efficient and accurate method to solve linear differential equation. The Bernoulli wavelet operational 

matrix of integration is utilized to reduce the problem to the solution of linear algebraic equations. One of the most advantage of this method is 

that accuracy approximate solutions achieved using very small values of 2k  and 3, 4M  . Illustrative examples are included to demonstrate 

the validity and applicability of the proposed method. 
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solution 

             BWS 

( )y t

t
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